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Bacterial adaptation is accelerated by the acquisition of novel traits through horizontal gene

transfer, but the integration of these genes affects genome organization. We found that

transferred genes are concentrated in only ~1% of the chromosomal regions (hotspots) in 80

bacterial species. This concentration increases with genome size and with the rate of transfer.

Hotspots diversify by rapid gene turnover; their chromosomal distribution depends on

local contexts (neighboring core genes), and content in mobile genetic elements. Hotspots

concentrate most changes in gene repertoires, reduce the trade-off between genome

diversification and organization, and should be treasure troves of strain-specific adaptive

genes. Most mobile genetic elements and antibiotic resistance genes are in hotspots, but

many hotspots lack recognizable mobile genetic elements and exhibit frequent homologous

recombination at flanking core genes. Overrepresentation of hotspots with fewer

mobile genetic elements in naturally transformable bacteria suggests that homologous

recombination and horizontal gene transfer are tightly linked in genome evolution.
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The gene repertoires of bacterial species are often very
diverse, which is central to bacterial adaption to changing
environments, new ecological niches, and co-evolving

eukaryotic hosts1. Novel genes arise in bacterial
genomes mostly by horizontal gene transfer (HGT)2, a pervasive
evolutionary process that spreads genes between, eventually very
distant, bacterial lineages3. It is commonly thought that the
majority of genes acquired by HGT are neutral or deleterious
and thus rapidly lost4. Yet, HGT is also responsible for the
acquisition of many adaptive traits, including antibiotic resistance
in nosocomials5. Hence, genome diversification is shaped by the
balancing processes of gene acquisition and loss6, moderated by
positive selection on some genes, and purifying selection on many
others7.

Chromosomes are organized to favor the interactions of DNA
with the cellular machinery8. For example, most bacterial genes
are co-transcribed in operons, leading to strong and highly
conserved genetic linkage between neighboring genes9. At a more
global level, early-replicating regions are enriched in
highly expressed genes in fast-growing bacteria to enjoy
replication-associated gene dosage, creating a negative gradient of
expression along the axis from the origin (ori) to the terminus
(ter) of replication (ori->ter)10, 11. These organizational traits can
be disrupted by the integration of novel genetic information. At a
local level, new genes rarely integrate within an operon
and, instead, they tend to be incorporated at its edges, where
they are less likely to affect gene expression12. At the genome
level, the frequency of integration of prophages in the genome
of Escherichia coli increases along the ori->ter axis13. The results
of these studies suggest that the fitness effects of HGT in terms of
chromosome organization depend on the specific site of
integration.

In prokaryotes, HGT takes place by three main mechanisms:
natural transformation, conjugation, and transduction. Mobile
genetic elements (MGEs) play a key role in HGT because they
are responsible for the latter two processes, respectively by
the activity of conjugative elements and phages14. Integrative
conjugative elements (ICEs) and prophages are large genetic
elements that may account for a significant fraction of the
bacterial genome15, 16, and bring to the chromosome many genes
in a single event of integration. For example, some strains of
E. coli have up to 18 prophages17, and Mesorhizobium loti

encodes one ~500 kb ICE18. The integration of these large MGEs
changes the chromosome size and may split adaptive genetic
structures such as operons. This might contribute to explain why
most integrative MGEs use site-specific recombinases (integrases)
that target very specific sites in the chromosome19. Integrases and
MGEs have co-evolved with the host genome to decrease the
fitness cost of their integration13.

MGEs carrying similar integrases tend to integrate at the same
sites in the chromosome, leading to regions with unexpectedly
high frequency of MGEs at homologous regions. This
concentration of MGEs in few sites has been frequently descri-
bed20, 21, especially in relation to the presence of neighboring
tRNA and tmRNA genes22. Yet, a previous work described the
existence of regions with high rates of diversification in E. coli
(hotspots), some of which lacked recognizable integrases23. In
particular, the genes flanking two hotspots were associated with
high rates of homologous recombination (rfb and leuX). In
Streptococcus pneumoniae, the chromosomal genes flanking
MGEs also showed higher rates of homologous recombination24,
25. In this species, it was suggested that integration of MGEs close
to core genes under selection for diversification could be adaptive
by facilitating the transfer and subsequent recombination of the
latter26.

Here, we define and identify hotspots in a large and diverse
panel of bacterial species and show how they reflect the
mechanisms driving genome diversification by HGT.

Results
Quantification of HGT and definition of hotspots. To study
the distribution of gene families in bacterial chromosomes, we
analyzed 932 complete genomes of 80 bacterial species
(Supplementary Data set 1). We inferred the core genome, the
pan-genome, the accessory genome (genes from the pan-genome
absent from the core), and the phylogeny of each species, as
before27 (Methods, Supplementary Figs. 1 and 2). We partitioned
the genomes into an array of core genes and intervals (Fig. 1,
Table 1). The latter were defined as the positions between
consecutive core genes. We defined a spot as the set of intervals
delimited by members of the same two families of core genes in
the genomes of the clade (see Methods for rigorous definitions,
Supplementary Fig. 2a, b). We observed that 99.4% of the
intervals were part of the species’ spots and only 0.6% were in
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breakpoint intervals. Since 99.8% of spots are flanked by the same
two families of core genes in at least half of the genomes of each
clade (and 99% in all genomes), it is most parsimonious to
consider that the two core genes were already contiguous in
the last common ancestor of the clade. Hence, we split the
pan-genomes in spot pan-genomes, i.e., sets of gene families
located in each spot (Methods, Supplementary Fig. 2). The
genes outside spots, i.e., in intervals that were split by events of
rearrangement, accounted for < 2% of the total number of genes
and were discarded from further analysis.

We used birth-and-death models to identify HGT events in the
clade’s phylogenetic trees from the patterns of presence/absence
of each gene family (Methods). Note that HGT events are defined
gene per gene (which will be called HTgenes for Horizontally
Transferred Genes), not as blocks, because there are no tools
available for the latter and because the goal of our work was to
study the clustering of genes acquired by HGT without using a
priori models. Spots contained 170,041 HTgenes (15.5% of the
total number of accessory genes). We quantified the clustering of
these genes by counting the minimal number of spots required to
accumulate at least 50% of the HTgenes (HTg50) (Fig. 2a). The
distribution of these values was skewed toward small values
(Fig. 2b). Hence, < 2% of the largest hotspots accumulate >50%
of all HTgenes. Conversely, 72.6% of the spots were on average
empty, i.e., had no accessory gene in any genome. Similar
qualitative conclusions were obtained in the analysis of the
distribution of all accessory genes, despite the latter being slightly
less clustered (Supplementary Fig. 3). These results show that
most HTgenes are integrated in a very small number of sites in
the genome.

We used simulations to infer the statistical thresholds for the
degree of clustering of HTgenes in each clade (Methods,
Supplementary Fig. 4). We made the null hypothesis that these
genes are organized in operons like the other genes, and are
uniformly distributed among spots. We identified the spot with
the highest number of HTgenes in each simulation (MaxHTg,i),
and computed the 95th percentile of the distribution of these
maximal values (T95%, Supplementary Data set 1). Simulations
disregarding the existence of operons produced lower values of
T95% showing the importance of incorporating information about
genetic organization in the model (Supplementary Fig. 5). Spots
with more than T95% HTgenes were called hotspots, spots lacking
accessory genes were called empty, and the others were called
coldspots. We found a total of 1841 hotspots in the 80 clades
(Supplementary Data set 1). They represent only 1.2% of the
spots, but they concentrate 47% of the accessory gene families and
60% of the HTgenes.

The number of hotspots differed widely among clades, from
none or very few in Acetobacter pasteurianus, Bacillus anthracis,
and the obligatory endosymbionts, to more than 60 in Bacillus
thuringiensis, E. coli, and Pseudomonas putida (Fig. 3a). This
variance was partly a function of chromosome size (Fig. 3b), but
was especially associated with the number of HTgenes (Fig. 3c).
Increases in the latter resulted in a less-than-linearly increase in
the number of hotspots and in a linear increase in hotspot density
per Mb (Supplementary Fig. 6). Hence, a few hotspots aggregate
most of the genes acquired by horizontal transfer and this trend is
more pronounced when the rates of transfer are high.

Functional and genetic characterization of hotspots. We
investigated the function of the genes in the spots, using
the eggNOG categories, to assess if hotspots were enriched in
particular traits (Methods, Fig. 4a). Genes classified as poorly
characterized or as having an unknown function were not
considered in the subsequent functional analyses (they were
13.1% of the total). We then compared the distribution of
the functions of all accessory genes and that of HTgenes
in hotspots relative to coldspots. Both analyses showed an
underrepresentation of translation and post-translational
modification genes in hotspots. These genes tend to be essential
and are less frequently transferred horizontally28. In contrast,
hotspots overrepresented genes associated with cell motility,
defense mechanisms, transcription, and replication and repair.
Moreover, around 9% of the hotspots encoded antibiotic

Table 1 Acronyms used in this study

MGE Mobile genetic element (i.e., prophage, ICE, IME and
integron)

ICE Integrative conjugative element
IME Integrative mobilizable element
MAP Mobility-associated protein (i.e., integrase and transposase

(IS))
ARG Antibiotic resistance gene
HGT Horizontal gene transfer
HTgenes Genes having been horizontally transferred
HTg50 Number of spots required to include 50% of HTgenes
T95% Minimal number of HTgenes required to define a hotspot
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resistance genes (ARGs), which is much more than expected by
chance (0.8%) (Fig. 4b).

Some of the functions overrepresented in hotspots—defense,
replication, repair—are typically found in MGEs, which concen-
trate in specific loci targeted by integrases (often at tRNAs).
Accordingly, the vast majority of self-mobilizable MGEs—89% of
the prophages and 90% of ICEs—were identified in hotspots
(Supplementary Data set 3 and Supplementary Fig. 7). On the

other hand, only around 9% of the hotspots encoded ICEs or
integrative mobilizable elements (IMEs), and only 23% encoded
prophages (Fig. 5). Integrons were even rarer (present in 1% of
the hotspots). Non-self-transferable MGEs lack conjugation or
virion structural genes, but usually encode integrases. The vast
majority of integrases was identified in hotspots, but less than half
(45%) of the hotspots encoded an integrase and only 29%
encoded tRNA or tmRNA genes (Fig. 5). Hence, although most
self-mobilizable MGEs are in hotspots, most hotspots lack them
(Supplementary Fig. 8).

Insertion sequences (ISs) encoding DDE recombinases
(transposases) are frequent within MGEs, and we found them
in many hotspots (56%). The integration of these elements has
low-sequence specificity, which explains why hotspots accounted
for a small fraction of the locations with ISs (19%), unlike
what we observed for self-mobilizable MGEs and integrases.
Altogether, half of the hotspots lacked evidence for the presence
of MGEs and 27% lacked any of the mobility-associated proteins
(MAPs, integrases and transposases) that we searched for. These
results confirm that hotspots concentrate most MGEs and
integrases, but not the majority of ISs. They also show
that regions with high concentration of HTgenes often lack
recognizable MGEs, suggesting that other mechanisms are
implicated in their genesis and turnover.

The chromosomal context of hotspots. We then searched to
identify the preferential genetic contexts of hotspots, since they
might illuminate constraints associated with the chromosomal
organization of HGT. We analyzed whether the distribution of
hotspots was random relative to the function of the neighboring
core genes. Interestingly, these core genes showed an
overrepresentation of several functions, notably replication,
recombination/repair, and transcription (Fig. 4a). In contrast, cell
cycle control genes were underrepresented. Hence, hotspots are
preferentially associated with specific functions of neighboring
core genes.

We then tested whether hotspots were randomly distributed in
genomes. Since replication drives much of the large-scale
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organization of bacterial genomes8, we analyzed the position of
hotspots relative to the distance to the origin of replication along
the replichore. These results showed that the frequency of
hotspots including prophages, as previously shown in E. coli13,
increases linearly along the ori-> ter replication axis (Fig. 6a).
Interestingly, this does not seem to be the case for ICEs and IMEs,
nor for the very large category of hotspots that lack ICEs, IMEs,
and prophages.

As these results show that prophages and ICEs have different
distribution patterns, we quantified the frequency of
co-occurrence of different MGEs and MAPs in the same hotspots
(but not necessarily in the same intervals, Fig. 6b). In line
with expectations, most MGEs significantly co-occurred with
integrases, integrons, ISs, and tRNAs. The most notable
exceptions concerned the prophages, that did not significantly

co-occurred with ISs, presumably because ISs are rare in
phages29, or integrons, and they were found less frequently than
expected in spots with conjugative elements. This is in line with
the analysis showing that they have specifically different
distributions along the chromosome replication axis.

Genetic diversity of hotspots. The integration of a MGE in the
chromosome adds a large number of genes in one single location,
potentially creating a hotspot on itself. Such events result in a
concentration of HTgenes in a genome (strain-specific integra-
tion), or in several genomes (when the integration took place at
the last common ancestor of several strains). The distribution of
the number of genomes with orthologous HTgenes in hotspots
suggests that these cases are relatively rare (Supplementary
Fig. 9a). Only 8% of the hotspots had all accessory gene families
represented in one genome (Supplementary Fig. 9b, c). Hence,
few of these regions seem to have been created by the integration
of a single MGE.

To assess whether genetic diversity in hotspots was compatible
with one single ancient integration event, we introduced measures
derived from the analysis of beta diversity in Ecology, where it is
used to measure the differences in species composition between
different locations30 (Methods). Here we used it to measure the
difference in gene repertoires among a set of intervals from
the same spot. We measured the Sørensen index (βSOR) for
hotspots and coldspots of each species using the binary matrix
of gene presence/absence. Diversity results from a mixture of
independent gene acquisitions and replacements (turnover)
and differential gene loss (nestedness), and βSOR can be
partitioned into the two related additive terms: turnover (βSIM)
and nestedness (βNES) (βSOR= βNES + βSIM, Fig. 7a).

Beta diversity of accessory genes was higher in hotspots than in
coldspots (Fig. 7b). This difference was caused by turnover,
since only βSIM was significantly higher in hotspots than in
coldspots (Fig. 7c). The values of βNES were very low in both
cases; confirming that most hotspots are not caused by singular
events of integration of MGEs. We obtained similar results
when the analysis of diversity was restricted to HTgenes
(Supplementary Fig. 10). While genetic diversity is high in
hotspots and coldspots, these results show faster diversification in
hotspots because they endure higher genetic turnover.

Finally, we wished to test whether hotspots lacking MAPs had
such a high genetic turnover that MGEs would be rapidly
removed. We split the hotspots into two categories: hotspots
containing and lacking MAPs. Both categories showed values of
genetic diversity close to one that were caused by high turnover.
Nevertheless, hotspots lacking MAPs showed slightly lower
values for these variables (Supplementary Fig. 11). Hence, the
absence of MAPs in these hotspots is not due to an excess of
genetic turnover.

Hotspots of homologous recombination. Many hotspots lack
identifiable MGEs or even integrases. Yet, they show high genetic
diversity, suggesting that other mechanisms may drive their
evolution. We tested the possibility that these regions could
integrate HTgenes by homologous recombination at the flanking
core genes, as suggested for certain hotspots of E. coli23 and S.
pneumoniae24 (Fig. 8a). Our hypothesis predicts higher levels of
homologous recombination in core genes flanking hotspots than
in the rest of the core genome. We tested this prediction in two
complementary ways. Firstly, we detected homologous recombi-
nation events in the core genes using ClonalFrameML (Methods).
We found 50% more recombination events in core genes flanking
hotspots than in the other core genes (Fig. 8b). Secondly, we
searched for evidence of phylogenetic incongruence between each
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core gene family and the whole core genome tree of the clade
using the Shimodaira–Hasegawa (SH) test (Methods). The
number of genes with significant phylogenetic incongruence was
30% higher among core genes flanking hotspots than among the
others (Fig. 8b). In line with these observations, core genes
flanking hotspots also had higher nucleotide diversity (Fig. 8c).
We found qualitatively similar results when the analysis was
performed on a per species or per genus basis (Supplementary
Data set 5). Hence, core genes flanking hotspots are more targeted
by recombination processes than the others.

Naturally transformable bacteria have the ability to acquire
genetic material independently of MGEs. In these species,
transfer of chromosomal material mediated by homologous
recombination at the flanking core genes might be particularly
frequent. To test this hypothesis, we put apart the 19 bacterial
species that are known to be naturally transformable in our
dataset31 (Supplementary Data set 1). We observed that these
species had more hotspots than the others (P< 0.05,
Mann–Whitney–Wilcoxon test). We searched for MAPs in these
hotspots and observed that they also had fewer hotspots
with MAPs (P< 0.05, Mann–Whitney–Wilcoxon test). Finally,
recombination was 20% more frequent in core genes flanking
hotspots in naturally transformable than in the remaining
bacteria (P< 10−4; χ2-test). These results suggest that recombina-
tion at core genes flanking hotspots might be particularly
important in driving genetic diversification of naturally trans-
formable bacteria.

Discussion
Our study showed high concentration of HTgenes in a small
number of locations in the chromosomes of many bacterial
species. These hotspots include most MGE-related genes, fitting

previous observations that the latter co-evolved with the host to
use integrases targeting specific locations in the chromosome that
minimize the fitness cost of chromosomal integration.
For example, many temperate phages integrate tRNA genes
without disrupting their function32. The concentration of most
self-mobilizable MGEs at few loci might be thought sufficient to
justify the existence of hotspots, but we found that few hotspots
had identifiable prophages or conjugative elements and that
most lacked integrases. These puzzling results could be caused
by failure to identify MGEs, but our methods were shown to
be highly accurate at identifying conjugative elements and
prophages13, 33, or by the presence of many radically novel
integrase-lacking MGEs in these model microbial species, which
would be very surprising. Hotspots also contain degenerate MGEs
that we have failed to identify. Yet, inactivated elements are not
expected to drive the observed rapid genetic turnover of these
regions.

Our results suggest that an MGE-independent mechanism,
double homologous recombination at the flanking core genes,
contributes to hotspot diversification. The mechanism only
requires housekeeping recombination functions and exogenous
DNA with homology to the flanking core genes. This last
condition is easy to fulfill, because these genes are present in all
genomes of the species (and usually in closely related species).
In agreement with our hypothesis, we showed that naturally
transformable species had more hotspots, and fewer MAPs in
hotspots, than the others. There are other mechanisms of transfer
that can bring homologous sequences without MAPs in
non-transformable bacteria, including generalized transduction,
gene transfer agents, or DNA-carrying vesicles34. Their role in
hotspot diversification remains to be explored.
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Many HTgenes are not adaptive (or even deleterious) and are
rapidly lost by genetic drift (or purifying selection)6, 7, 35.
Nevertheless, regions of high concentration of HTgenes must
also include adaptive genes, as shown here for ARGs. In these
circumstances, the high genetic turnover at hotspots might
seem paradoxical, because it may lead to their loss. Actually, even
adaptive genes can be lost with little fitness cost under certain
circumstances. Genes under diversifying selection, such as
defense systems, may be adaptive for short periods of time
and subsequently lost (or replaced by analogous genes)36.
Some costly genes may be adaptive in only very specific
conditions, such as ARGs37, and become deleterious for the cell
fitness upon environmental change. Finally, some genes under

frequency-dependent selection, such as toxins38, may stop being
adaptive when their frequency changes in the population. Genetic
drift, purifying, diversifying, and frequency-dependent selection
can thus contribute to the rapid turnover of HTgenes. As a
consequence of their high genetic turnover, hotspots are expected
to be enriched in genes of specific adaptive value.

Hotspots may affect bacterial fitness not only by the genes they
contain, but also by the way they drive genome diversification.
According to the chromosome-curing model39, hotspots may
facilitate the elimination of elements with deleterious fitness
effects, such as certain MGEs, by double recombination at the
flanking core genes. This fits our observation that core
genes flanking hotspots endure higher rates of homologous
recombination. As a response to chromosome curing, natural
selection is expected to favor MGEs that inactivate genes
encoding recombination and repair proteins39. Interestingly, we
also found that hotspots tend to be flanked by recombination and
repair core genes. Although these genes seem intact, at least they
respect the constraints that we imposed for their classification as
core genes, their expression may be affected by HTgenes in the
neighboring hotspot. For example, excision of a MGE in Vibrio
spendidus 12B01 from a mutS gene downregulates the expression
of the latter leading to a hypermutator phenotype40.

Several selective effects can contribute to explain the very
different number of hotspots per species, which were strongly
correlated with the number of HTgenes and weakly with genome
size (itself also correlated with the rate of HGT27). The first
association may explain why species with little genetic diversity,
such as B. anthracis and mycobacteria, have few hotspots in spite
of their large genome size. It is also possible that our statistical
tests lack power when species have few HTgenes. Some ecological
determinants also affect the number of HTgenes, and their
concentration in the genome. For example, sexually isolated
species with few MGEs, such as obligatory endosymbionts, are
expected to have few hotspots. Many of these species may also
inefficiently select for hotspots because they have low effective
population sizes. Conversely, the highest number of hotspots
was found in facultative pathogens with very diverse gene
repertoires, including E. coli, Pseudomonas spp., and Bacillus
cereus. A rigorous statistical assessment of the ecological traits
affecting the organization of HTgenes will require the analysis of
a larger panel of species representative of the different prokaryotic
lifestyles.

Overall, our results suggest that hotspots are the result of
the interplay of several recombination mechanisms and
natural selection, presumably because they minimize disruption
of genome organization by circumscribing gene flux to a small
number of permissive chromosomal locations. For example, the
increase in prophage-containing hotspots along the ori-> ter axis
suggests co-evolution between these elements and the host to
remove prophages from early replicating regions that are also rich
in highly expressed genes in fast growing bacteria13. Interestingly,
the spatial distribution of the remaining hotspots does not show
similar patterns, which can be due to the lower fitness
costs associated with their excision. Further work is needed to
understand if there are other organizational traits that constrain
the distribution of hotspots in the chromosome, and in particular
in those devoid of recognizable MGEs. Knowing these traits
might facilitate large-scale genetic engineering and should lead to
a better understanding of the evolutionary interactions between
horizontal gene transfer and genome organization.

Finally, our study focused on the dynamics of hotspots
and how they contribute to genome diversification, but left
unanswered the questions related to their origin and fate.
Previous studies identified common prophage hotspots between
E. coli and Salmonella enterica13. Hence, we will have to study
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taxonomical units broader than the species level to unravel their
origin. As for their fate, long-term adaptive HTgenes may become
fixed in the population, explaining the patterns of nestedness of
certain hotspots, and leading eventually to the split of the hotspot
into two new (eventually hot) spots.

Methods
Data. The sequences and annotations of 932 bacterial genomes from 80 bacterial
species were retrieved from Genbank Refseq (ftp://ftp.ncbi.nih.gov/genomes, last
accessed in February 2014)41. We made no selection on the species that were to be
analyzed, except that we required a minimum of four complete genomes per
species. We have made no attempt to re-define species: we used the information
presented in GenBank. Their list is available in Supplementary Data set 1. We
excluded CDS annotated as partial genes, as well as those lacking a stop codon or
having stop codons within the reading frame. Core genomes and phylogenetic
reconstructions were obtained from our previous work27 (Supplementary
Data set 2). Our data set includes several species from the same genera. It also
includes species with diverse numbers of genomes and HTgenes. To minimize the
effects of these unavoidable biases most of our analyses are non-parametric and
each species has the same weight. When they were done on the data cumulated
from all species, we made a control where each species is analyzed separately. We
also made complementary analyses where we aggregated the results per genus.
The references for these supplementary controls are indicated in the main text, and
the data are in the Supplementary Material.

Identification of core genomes. We used 80 core genomes previously published27.
These core genomes were built for clades with at least four complete genomes
available in GenBank RefSeq (Supplementary Data set 1, Supplementary Fig. 1).
Briefly, a preliminary list of orthologs was identified as reciprocal best hits using
end-gap-free global alignment, between the proteome of a reference genome
(pivot, typically the first completely sequenced isolate) and each of the other
strain’s proteomes. Hits with < 80% similarity in amino-acid sequence or >20%
difference in protein length were discarded. This list of orthologs was then refined
for every pairwise comparison using information on the conservation of gene
neighborhood. Thus, positional orthologs were defined as bi-directional best
hits adjacent to at least four other pairs of bi-directional best hits within a
neighborhood of 10 genes (five upstream and five downstream). These parameters
(four genes being less than half of the diameter of the neighborhood) allow
retrieving orthologs at the edge of rearrangement breakpoints (positions where
intervals were split by events of chromosome rearrangement) and therefore render
the analysis robust to the presence of a few rearrangements. The core genome of
each clade was defined as the intersection of pairwise lists of positional orthologs.

Definitions of interval and spot. The core genome is the collection of all
gene families present in one and only one copy in each genome of a clade
(Supplementary Fig. 2). Let CX and CY be two families of core genes in a clade with
N taxa where one of the taxa is a pivot (reference genome, see above). We call CAX

and CAY contiguous core genes in a given chromosome A if they are adjacent in the
list of core genes sorted in terms of the position in the chromosome. We defined an
interval (IAX, AY) as the location between the pair of contiguous core genes CAX and
CAY in chromosome A. The content of an interval is the set of accessory genes in
the interval. The HTgenes content of an interval is the number of genes that were
acquired by HGT in the interval. Multiple chromosomes, when present, were
treated independently.

Intervals flanked by the same core gene families (CX, CY) as the pivot genome
were defined as syntenic intervals (i.e., the members of the core gene families X and
Y were also contiguous in the pivot). The intervals that do not satisfy this
constraint were classed as breakpoint intervals and excluded from our analysis.
They contain < 2% of all genes. For every interval in the pivot genome, we defined
spot as the set of syntenic intervals flanked by members of the same pair of core
gene families (Supplementary Fig. 2).

Identification of spot pan-genomes. The pan-genome is the full complement of
homologous gene families in a clade. We built a pan-genome for each species using
the gene repertoire of each genome. Initially, we determined a preliminary list of
putative homologous proteins between pairs of genomes (excluding plasmids) by
searching for sequence similarity between each pair of proteins with BLASTP
v.2.2.28+ (default parameters). We then used the e-values (<10−4) of the BLASTP
output to cluster them using SILIX (v1.2.8, http://lbbe.univ-lyon1.fr/SiLiX)42. We
set the parameters of SILIX such that two proteins were clustered in the same
family if the alignment had at least 80% identity and covered >80% of the smallest
protein (options –I 0.8 and –r 0.8). We computed the diversity of gene families
observed in each spot. The spot pan-genome is the set of gene families present in
the intervals associated with the spot (Supplementary Fig. 2).

Reconstruction of the evolution of gene repertoires. We assessed the evolu-
tionary dynamics of gene repertoires of each clade using Count43 (downloaded in

April 2015). This program uses birth-death models to identify the rates of gene
deletion, duplication, and loss in each branch of a phylogenetic tree. We used the
spots’ pan-genomes matrices, and the phylogenetic birth-and-death model of
Count, to evaluate the most likely scenario for the evolution of a given gene family
on the clade’s tree. Rates were computed with default parameters, assuming a
Poisson distribution for the family size at the tree root, and uniform gain, loss,
and duplication rates. One hundred rounds of rate optimization were computed
with a convergence threshold of 10−3. After optimization of the branch-specific
parameters of the model, we performed ancestral reconstructions by computing the
branch-specific posterior probabilities of evolutionary events, and inferred the
gains in the terminal branches of the tree. The posterior probability matrix was
converted into a binary matrix of presence/absence of HTgenes using a threshold
probability of gain higher than 0.95 at the terminal branches and excluding gains
occurring in the last common ancestor with a probability higher than 0.5.

Identification of hotspots. We made simulations to obtain the expected
distribution of HTgenes in the spots given the numbers of HTgenes and spots
(Supplementary Fig. 4). We made the null hypothesis that the distribution of
these genes was constrained by the frequency of genes in operons, and followed a
uniform distribution in all other respects. Previous works have shown that
two-third of the genes are in operons and one-third are in mono-cistronic units44,
with little inter-species variation for the average length of poly-cistronic units
(3.15± 0.06)45. Hence, given N HTgenes per clade we created two groups of
elements: N/3 isolated genes and 2 N/3 in operons with three genes. These elements
were then randomly placed among the spots following a uniform distribution.
For each of the 1000 simulations (per species), we recorded the maximal value of
genes within a single spot (MaxHTg,i), which was used to identify the value of
the 95th percentile (T95%) of the distribution of MaxHTg,i. Hence, 95% of the
simulations have no spot with more than T95% genes (Supplementary Data set 1).
Spots (in the real genomes) with more than T95% HTgenes were regarded as
hotspots. Spots lacking accessory genes were called empty spots. The other spots
were called coldspots.

As a control, we also made simulations considering that HTgenes were acquired
independently of the structure in operons (i.e., considering N isolated genes).
The values of T95% of the two analyses were highly correlated (Spearman’s ρ= 0.89,
P< 10−4, Supplementary Data set 1), but those of the latter were smaller (linear
regression: T95% isolated= −0.62 + 0.66 T95% operons, R2= 0.87). This is expected
because the operon structure should increase the variance of the genes per spot,
and thus increase T95%.

Measures of gene repertoire diversity. Since most spots have few or no genes,
and most gene families have few (or no gene) per genome, we computed the genetic
diversity of spots using matrices of presence/absence of gene families (computed
from the pan-genome).

We computed beta diversity per clade, using a multiple-site version (each
interval is the equivalent of a site)46 of the widely used Sørensen dissimilarity index
(βSOR):

βSOR ¼
P

i<j min bi;j; bj;i
� �þP

i<j max bi;j; bj;i
� �

2 � P
i Si � ST

� �þP
i<j min bi;j; bj;i

� �þP
i<j max bi;j; bj;i

� � ; ð1Þ

where Si is the total number of accessory genes in genome i, ST is the total number
of accessory genes in all genomes considered together, and bi,j,bj,i are the numbers
of accessory genes present in genome i but not in j (bi,j) and vice-versa (bj,i).

We then used a partitioned version of the ecological concept of beta diversity to
characterize the gene diversity of spots46. βSOR can be partitioned into two additive
terms: turnover (βSIM) and nestedness (βNES) (βSOR= βNES + βSIM, Fig. 7a).

To compute the turnover we used the multiple-site version46 of the Simpson
dissimilarity index (βSIM):

βSIM ¼

P

i<j
min bi;j; bj;i

� �

2 � P
i Si � ST

� �þP
i<j min bi;j; bj;i

� � ; ð2Þ

This index is a measure of the evenness with which families of genes are
distributed across intervals of a spot (it is a measure of segregation). Turnover
implies the replacement of some gene families by others.

By definition, the multiple-site dissimilarity term accounting only for
nestedness (βNES) results from the subtraction46:

βNES ¼ βSOR � βSIM: ð3Þ
Nestedness occurs when intervals with fewer genes are subsets of intervals with

larger gene repertoires. It reflects a non-random process of gene loss.
The above formulae were computed as follows: first, we plotted the distribution

of the number of accessory genes from the hotspots of all clades analyzed. We took
the minimum of this distribution (mind) and used it to select coldspots with a
number of accessory genes equal or higher than mind. By doing this, we eliminated
coldspots with very few accessory genes, and likely to introduce a bias while
computing diversity (leading to extreme situations where ∑Si ≈ St; βSIM≈ 1, and as
consequence βNES≈ 0). After this filtering step, we put together all hotspots and all
coldspots of each genome in two separate concatenates to avoid statistical artifacts
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associated with poorly populated spots. The diversity was computed per clade for
each of the concatenates.

Inference of homologous recombination. We inferred homologous recombina-
tion on the multiple alignments of the core genes of each clade using
ClonalFrameML (CFML) v10.7.547 with a predefined tree (i.e., the clade’s tree),
default priors R/θ = 10−1, 1/δ= 10−3, and ν= 10−1, and 100 pseudo-bootstrap
replicates, as previously suggested47. Mean patristic branch lengths were computed
with the R package “ape” v3.348, and transition/transversion ratios were computed
with the R package “PopGenome” v2.1.649. The priors estimated by this mode were
used as initialization values to rerun CFML under the “per-branch model” mode
with a branch dispersion parameter of 0.1.

Functional assignment. Gene functional assignment was performed by searching
for protein similarity with HMMer (hmmsearch) on the bactNOG subset of the
eggNOG v4.5 database50 (downloaded in March 2016). We have considered the
pivot (reference) genomes as good representatives of each clade, and limited our
analysis to these. We have kept hits with an e-value lower than 10−5, a minimum
alignment coverage of 50%, and when the majority (>50%) of non-supervised
orthologous groups (NOGs) attributed to a given gene pertained to the same
functional group. Hits corresponding to poorly characterized or unknown
functional groups were discarded.

Identification of MGEs and proteins associated to mobility. Temperate phages
integrated in the bacterial chromosome (prophages) were identified using Phage
Finder v4.651 (stringent option). Prophages with> 25% of the predicted genes
belonging to ISs, and partially degraded prophages (shorter than 30 kb) were
removed52. Integrons were identified using IntegronFinder v.1.4 with the
–local_max option53. Integrative conjugative elements (ICEs) and integrative
mobilizable elements (IMEs) were identified using MacSyFinder v.1.0.254 with
TXSScan profiles55. Elements with a full conjugative apparatus were classed as ICE,
the others as IME (see ref. 33 for criteria). Integrases were identified using the
PFAM profiles PF00589 for tyrosine recombinases, and the pair of profiles
PF00239 and PF07508 for serine recombinases (http://pfam.xfam.org/)56. All the
protein profiles were searched using hmmsearch from the HMMer suite v.3.1b1
(default parameters). Hits were regarded as significant when their e-value was
smaller than 10−3 and their alignment covered at least 50% of the protein profile.
Insertion sequences (ISs) were detected combining two approaches (i) using
hmmsearch from the HMMer with IS HMM profiles (as previously proposed)57

and (ii) by a BLAST-based method using the ISFinder database58. Integrases and
transposases were defined as mobility-associated proteins (MAPs). tRNA genes
were identified using tRNAscan SE v.1.2159, tmRNA genes were identified using
Aragorn v.1.2.3760, and the location of the rRNA genes was taken from the
Genbank annotation file. Antibiotic resistance genes were detected using HMMer
against the curated database of antibiotic resistance protein families ResFams (Core
v.1.2, http://www.dantaslab.org/resfams)61 using the ‘-cut_ga’ option. A hotspot
was considered to encode a peculiar MGE or MAP when at least one genome of the
clade contained such element (Supplementary Data set 3).

Identification of origin and terminus of replication. The ori and ter of replica-
tion were predicted using Ori-Finder in the pivot genome of each clade62. When
the ratio of the predicted replichores length was greater than 1.2, the clade was
removed from the analysis (Supplementary Data set 4). Then, we divided each
replichore in 10 equally sized regions from the ori to the ter of replication.

Phylogenetic analyses. We retrieved the 16S rRNA sequences of the sequenced
type strains (also used as reference genomes, see above) of the 80 bacterial clades
(Fig. 3a). We made a multiple alignment of them with MAFFT v7.305b63 using
default settings, and removed poorly aligned regions with BMGE v1.1264 using
default settings. The tree was computed by maximum likelihood with PHYML
v3.065 under the general time reversible (GTR) + Γ(4) + I model (Supplementary
Data set 2a). This tree is never used in the calculations; it is only used in Fig. 3a to
display the relative position of each clade in the phylogeny of bacteria.

We built core genome trees for each clade using a concatenate of the multiple
alignments of the core genes (see main text). Each clade’s tree was computed with
RAxML v8.0066 under the GTR model and a gamma correction (GAMMA) for
variable evolutionary rates. All trees are shown in Supplementary Data set 2b.
We performed 100 bootstrap experiments on the concatenated alignments to assess
the robustness of the topology of each clade’s tree. The vast majority of nodes were
supported with bootstrap values higher than 90% (Supplementary Data set 2b).
We inferred the root of each phylogenetic clade’s tree using the midpoint-rooting
approach of the R package “phangorn” v1.99.1467. The alignment and the tree for
each individual core gene were used for topology testing against the clade’s tree
(i.e., the concatenate tree of all the core genes of the clade) using the
Shimodaira–Hasegawa (SH) congruence test68 (1000 replicates) implemented in
IQ-Tree v1.4.369.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files and
from the corresponding author upon reasonable request.
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