RNA-seq nanopore read correction

R. Chikhi, L. Lima, C. Marchet, ASTER Consortium

December 2017

Motivation

- Emerging cDNA and RNA nanopore data
- No dedicated error-correction tool yet

We evaluate existing DNA error-correction tools on RNA-seq data.

- Error rate? Lose coverage?
- Gene families collapsed? Isoform bias? (=overcorrection?)

Dataset

mouse brain cDNA

1D

sequenced @ Genoscope

filtered out mtRNA and rRNA

750k reads

Error-correction tools

Long+short (*hybrid*):

LoRDEC	DNA Pac	Bio/ONT
PBcR	mRNA/DNA Pac	Bio/ONT
NaS	DNA	ONT
Proovread	DNA Pac	Bio
CoLorMap	simulate	d

path in dBG align short->long, consensus align short->long, read recruitment, assembly align short->long, consensus align short->long, read recruitment, assembly

Long reads only (non-hybrid or self):

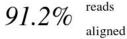
daccord	DNA PacBio
LoRMA	DNA PacBio/ONT
MECAT	DNA PacBio/ONT
Pbdagcon	DNA PacBio

path in dBG path in dBG, multi-iterations k-mer based align all-pairs long, consensus BLASR alignment, partial order graph

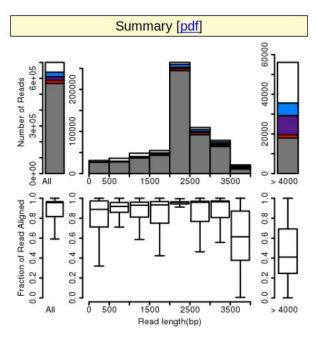
Not tested: Canu (option to correct ONT reads); HG-Color; HALC; HECIL; MIRCA; Jabba; Nanocorr (specific for ONT); LSCPlus (specific for long reads RNA);

Qualitative observations (spoilers)

- Original data: 16.5% error rate
- Best correctors: 0.5% error rate
- Some reads are dropped
- Some tools split reads, some don't
- Same with trimming
- Trend: fast = correct less, slow = correct more


Evaluation methodology

• AlignQC


Alignment analysis

Read Stats Total reads 700,452 Unaligned reads 61.526 8.8% Aligned reads 638,926 91.2% 567.331 -- Single-align reads 81.0% - Gapped-align reads 20,468 2.92% - Chimeric reads 51.127 7.30% --- Trans-chimeric 28,615 4.09% reads --- Self-chimeric reads 22,512 3.21% Base Stats (of aligned reads) 1.551.053.577 Total bases Unaligned bases 304,649,514 19.6% Aligned bases 1,246,404,063 80.4% Single-aligned bases 1,193,725,859 77.0% Other-aligned bases 9.833.971 0.63%

Unaligned Trans-chimeric alignment Self-chimeric alignment Gapped alignment Single alignment

80.4% bases aligned (of aligned reads)

More evaluation methodology

Raw and corrected reads mapped to genome (GMAP) and transcriptome (BWA-MEM)

Custom plots and simulations to look at:

- Whether correction drops low-abundance isoforms
- Whether reads are corrected towards the major isoform

Tool		Hybrid er	ror correctors		Self error correctors					
				Proovread	daccord	LoRMA	MECAT	pbdagcon		
Time (wall-clock)	2.4h	~63.2h	116h	107.1h	7.4h	3.4h	0.3h	6.2h		
Peak memory usage	5.6Gb	N/A	166.5Gb	53.6Gb	27.2Gb	79Gb	9.9Gb	27.2Gb		

32 threads on Intel Core Processor (Broadwell) @ 1999 MHz

Number of error-corrected reads

Same #reads

Split and/or discard

LoRDEC Proovread untrimmed pbdagcon All others

Number of error-corrected reads

Same #reads

Split and/or discard

LoRDEC Proovread untrimmed pbdagcon All others

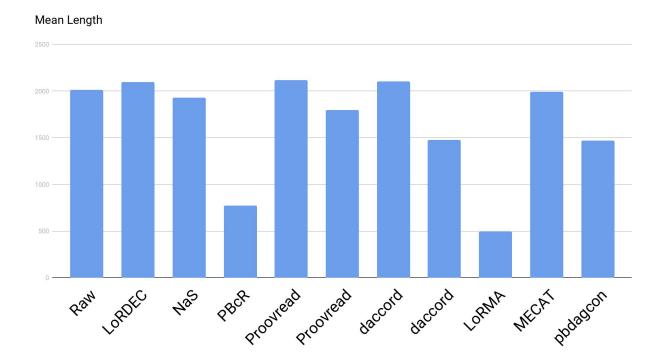
Tool	Raw		Hybrid	error col	rrectors		Self error correctors				
	Raw	LoRDEC	NaS	PBcR	Proovrea d untrim.	Proovrea d trim.	daccord	daccord trimmed	LoRMA	MECAT	pbdagcon
# reads (millions)	0.74	0.74	0.61	1.32	0.74	0.62	0.67	0.83	1.54	0.49	0.77

Mapping error-corrected reads

Much improved mapping rate from 83.5 % to up to 99 %

Mapping error-corrected reads

Much improved mapping rate from **83.5** % to up to **99** %


Tool	Raw		Hybrid	error cor	rectors		Self error correctors					
	Raw	LoRDEC	NaS	PBcR	Proovrea d untrim.	Proovrea d trim.	daccord	daccord trimmed	LoRMA	MECAT	pbdagcon	
# reads	740 776	740 776	619 172	1 321 299	738 224	626 272	675 463	839 711	1 540 032	494 645	778 264	
mapped reads %	83.5	85.5	98.7	99.2	85.5	98.9	92.5	94.0	99.4	99.4	98.2	

Mapped bases in error-corrected reads

Tool	Raw		Hybrid	error cor	rectors		Self error correctors					
	Raw	LoRDEC	NaS	PBcR	Proovread untrim.	Proovread trim.	daccord	daccord trimmed	LoRMA	MECAT	pbdagcon	
# reads	740 776	740 776	619 172	1 321 299	738 224	626 272	675 463	839 711	1 540 032	494 645	778 264	
mapped reads	83.5%	85.5%	98.7%	99.2%	85.5%	98.9%	92.5%	94.0%	99.4%	99.4%	98.2%	
% mapped bases in mapped reads	89.0	90.6	97.5	99.2	92.4	99.5	92.5	94.7	99.1	96.9	97.0	

Same trend as previous slide..

Mean length of error-corrected reads

Overall remarks on error-corrected reads

Tool	Raw		Hybrid	error coi	rrectors		Self error correctors						
	Raw	LoRDEC	NaS	PBcR*	Proovrea d untrim.	Proovrea d trim.	daccord	daccord trimmed	LoRMA*	MECAT	pbdagcon		
# reads	740 776	740 776	619 172	1 321 299	738 224	626 272	675 463	839 711	1 540 032	494 645	778 264		
mapped reads	83.5%	85.5%	98.7%	99.2%	85.5%	98.9%	92.5%	94.0%	99.4%	99.4%	98.2%		
mean length	2010	2096	1930	775	2117	1796	2102	1475	496	1994	1472		

Bottom line:

1. PBcR and LoRMA tend to split reads into short well-corrected subreads (long range connectivity is lost);

*

Overall error-corrected reads stats

Tool	Raw		Hybrid	error coi	rectors		Self error correctors					
	Raw	LoRDEC	NaS	PBcR*	Proovrea d untrim.	Proovrea d trim.	daccord	daccord trimmed	LoRMA*	MECAT*	pbdagcon	
# reads	740 776	740 776	619 172	1 321 299	738 224	626 272	675 463	839 711	1 540 032	494 645	778 264	
mapped reads	83.5%	85.5%	98.7%	99.2%	85.5%	98.9%	92.5%	94.0%	99.4%	99.4%	98.2%	
mean length	2010	2096	1930	775	2117	1796	2102	1475	496	1994	1472	

- 1. PBcR and LoRMA tend to split reads into short well-corrected subreads (long range connectivity is lost);
- 2. MECAT tends to eliminate many not well-corrected or short reads from the input;

Overall error-corrected reads stats

Tool	Raw		Hybrid	error cor	rectors		Self error correctors						
	Raw	LoRDEC*	NaS+	PBcR*	Proovrea d untrim*	Proovrea d trim.+	daccord+	daccord trimmed+	LoRMA*	MECAT*	pbdagcon+		
# reads	740 776	740 776	619 172	1 321 299	738 224	626 272	675 463	839 711	1 540 032	494 645	778 264		
mapped reads	83.5%	85.5%	98.7%	99.2%	85.5%	98.9%	92.5%	94.0%	99.4%	99.4%	98.2%		
mean length	2010	2096	1930	775	2117	1796	2102	1475	496	1994	1472		

Bottom line:

- 1. PBcR and LoRMA tend to split reads into short well-corrected subreads (long range connectivity is lost);
- 2. MECAT tends to eliminate many not well-corrected or short reads from the input;
- 3. LoRDEC and Proovread untrimmed corrections are underwhelming;

+ +

Correction accuracy

Tool	Raw		Hybrid	error cor	rectors		Self error correctors				
	Raw	LoRDEC* +	NaS++	PBcR*+	Proovread untrim*+	Proovread trim.++	daccord+*	daccord trim++	LoRMA*+	MECAT*+	pbdagcon +*
% per-base error rate	13.6	4.1	0.4	0.6	2.6	0.2	5.5	4.2	2.8	4.5	5.8

- 1. Hybrid error correctors have a natural advantage here (depth + low error rate from Illumina);
- 2. daccord and pbdagcon were underwhelming in this measure;

How homopolymers are corrected

Tool	Raw		Hybrid	error co	orrectors			Self e	error corre	ectors	
	Raw	LoRDEC* ++	NaS+++	PBcR*+ +	Proovread untrim*++	Proovread trim.+++	daccord+* *	daccord trim++*	LoRMA*+ *	MECAT*+ *	pbdagcon +**
% deletion homopolyme rs errors	2.9	0.7	<0.1	<0.1	0.4	<0.1	2.1	2	1.8	2	2.3
% insertion homopolyme rs errors	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

- 1. Hybrid error correctors have a natural advantage here (depth + Illumina has less homopolymer errors);
- 2. All self correctors were underwhelming in this measure;

How homopolymers are corrected

Tool	Raw		Hybrid	error co	orrectors		Self error correctors					
	Raw	LoRDEC*	NaS+++	PBcR*+ +	Proovread untrim*++	Proovread trim.+++	daccord+*	daccord trim++*	LoRMA*+ *	MECAT*+	pbdagcon +**	
% deletion homopolyme rs errors	2.9	0.7	<0.1	<0.1	0.4	<0.1	2.1	2	1.8	2	2.3	
% insertion homopolyme rs errors	0.3	<0.1	<0.1	<0.1	<0.1	≮0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	Trimming of badly corrected regions											

- 1. Hybrid error correctors have a natural advantage here (depth + Illumina has less homopolymer errors);
- 2. All self correctors were underwhelming in this measure (not their fault?);

Are gene families collapsed?

Tool	Raw	Hybrid error correctors				Self error correctors					
	Raw	LoRDEC*	NaS++++	PBcR*+++	Proovread untrim*+++	Proovread trim.++++	daccord+* *+	daccord trim++*+	LoRMA*+* *	MECAT*+ **	pbdagcon +**+
number of genes	16.9k	16.9k	15k	15.4k	16.7k	14.5k	15.7k	14k	6.6k	10.3k	13.2k

Bottom-line

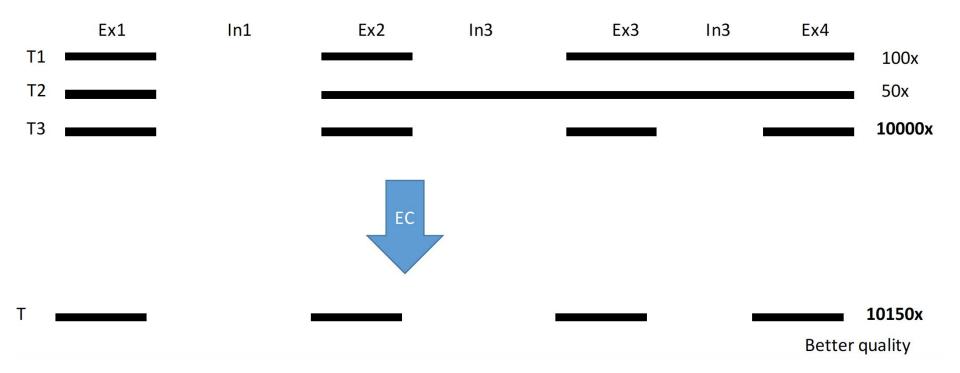
1. LoRMA and MECAT lose a lot of genes, likely not preserving gene families;

To trim or not to trim?

	Proovread	Proovread trim.	daccord	daccord trimmed
mapped reads	85.5%	98.9%	92.5%	94.0%
mapped bases ¹	92.4%	99.5%	92.5%	94.7%
per-base error rate ²	2.6%	0.2%	5.5%	4.2%

Trimmed output of tools:

+ more reads and bases are mapped, less errors;

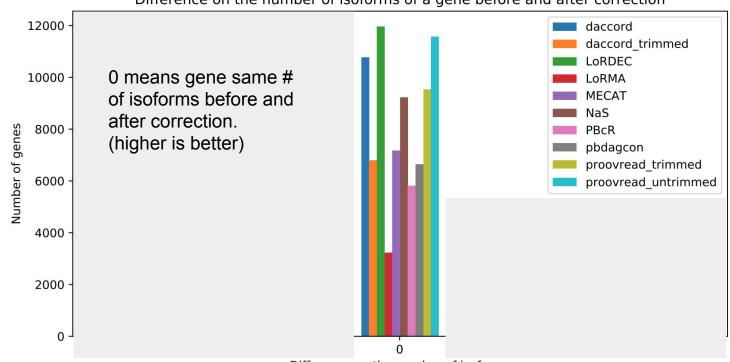

To trim or not to trim?

	Proovread	Proovread trim.	daccord	daccord trimmed
mean length	2117	1796	2102	1475
number of genes	16.7k	14.5k	15.7k	14k

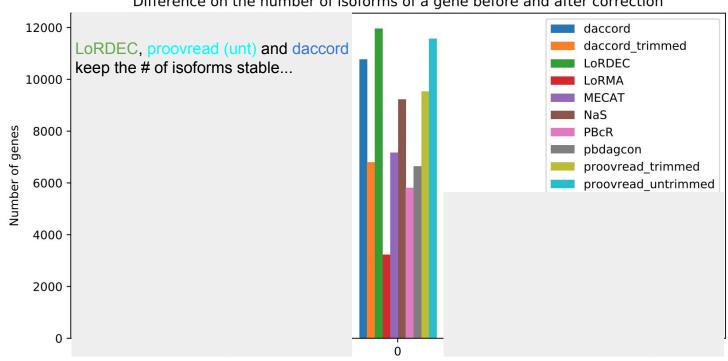
Trimmed output of tools:

- + more reads and bases are mapped, less errors;
- reads are shorter, less genes are identified;

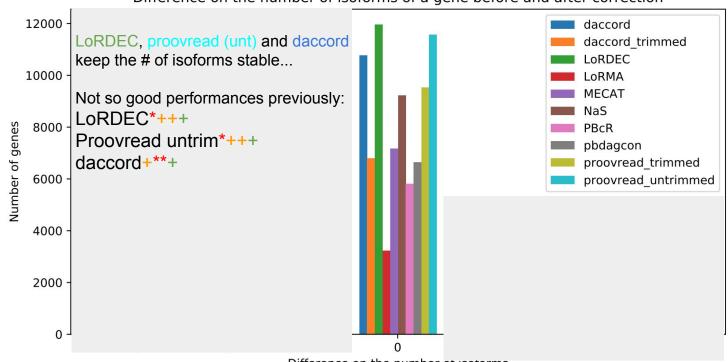
Is there a correction bias towards the major isoform?

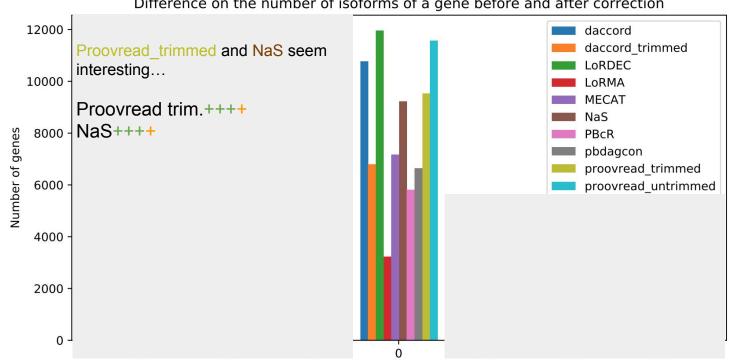


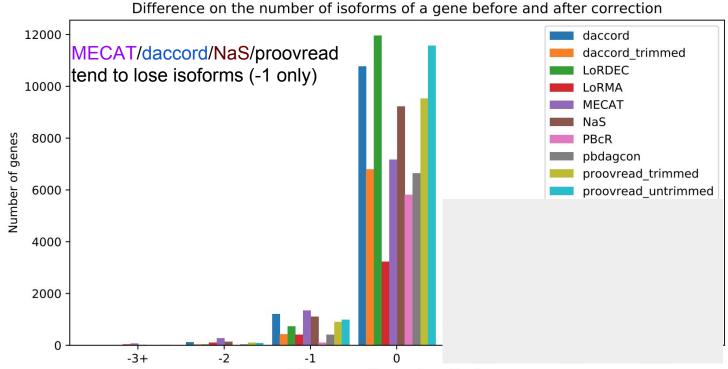
Is there a correction bias towards the major isoform?

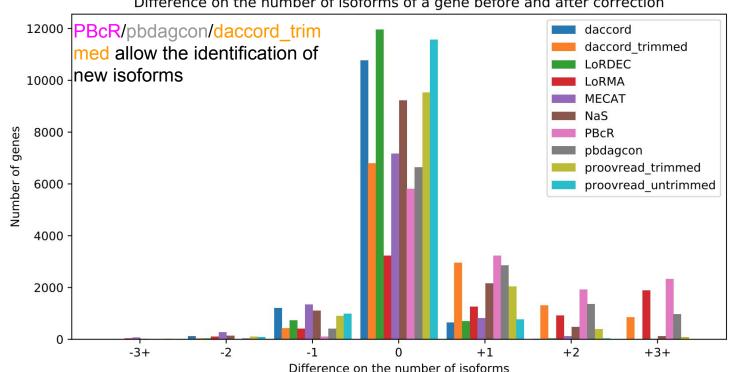

AlignQC

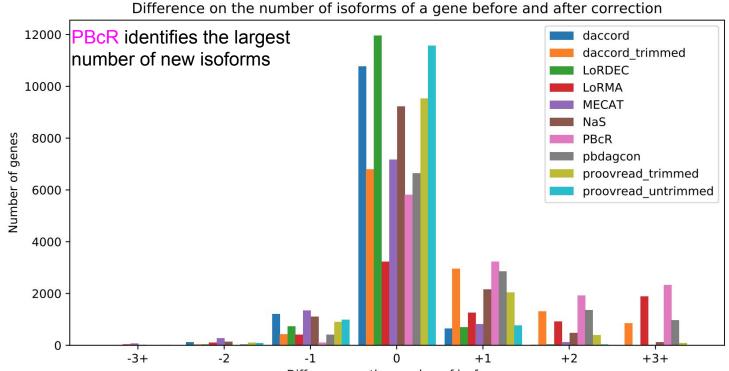
BWA-MEM on reference transcriptome Filters: no secondary and >=80% QC


Genes before correction \cap Genes after correction

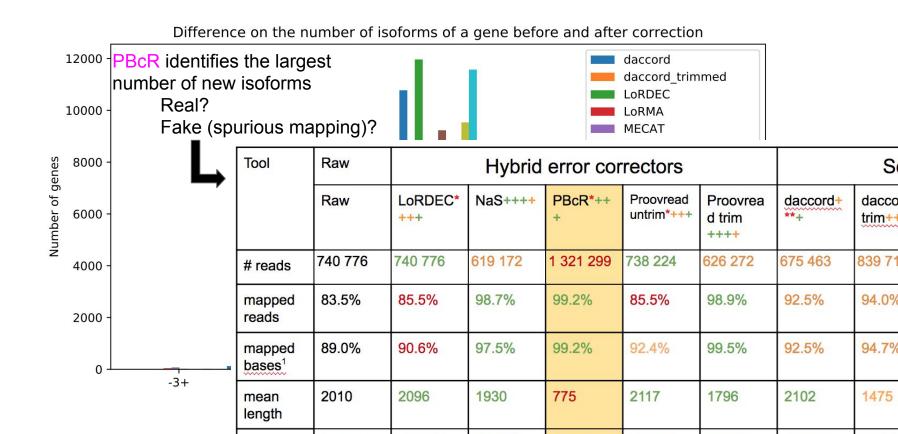

Difference on the number of isoforms

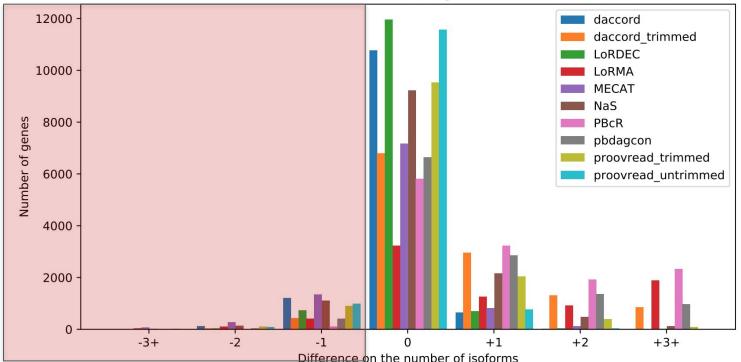

Difference on the number of isoforms

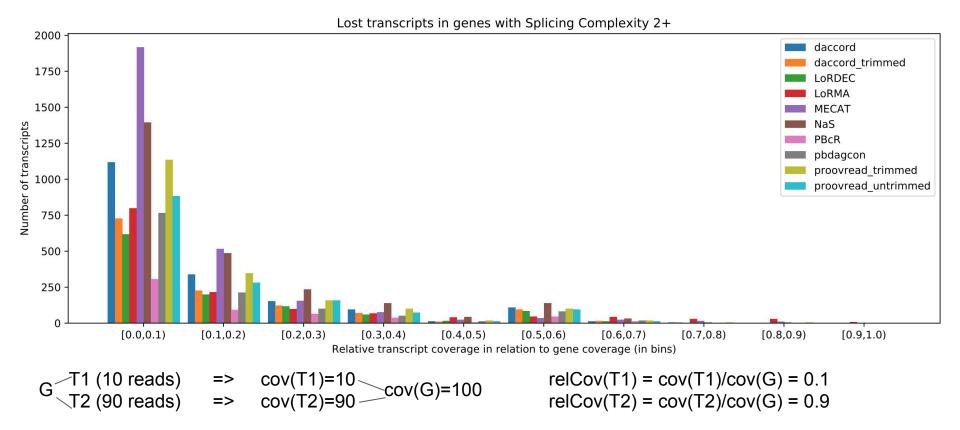

Difference on the number of isotorms

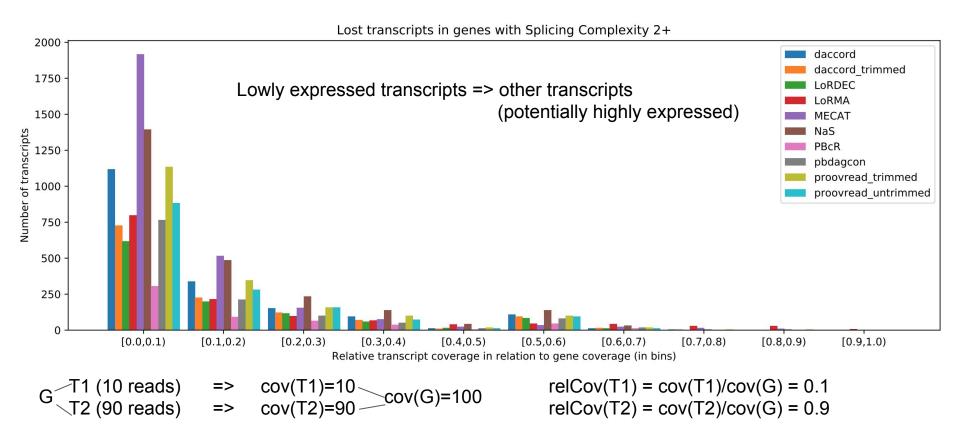


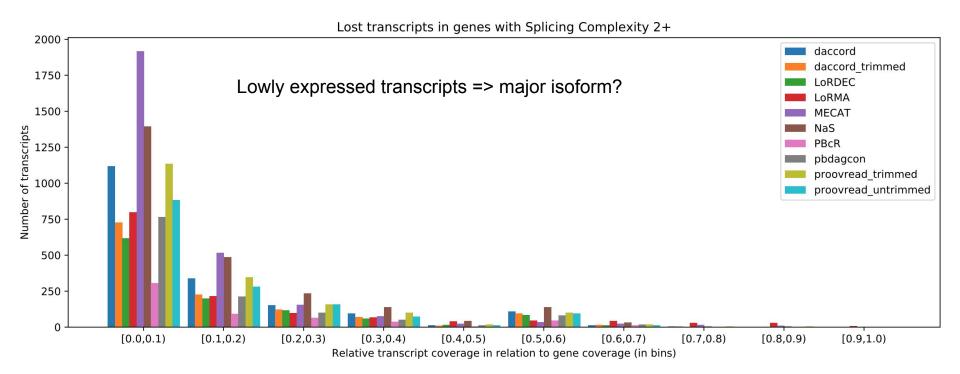
Difference on the number of isoforms



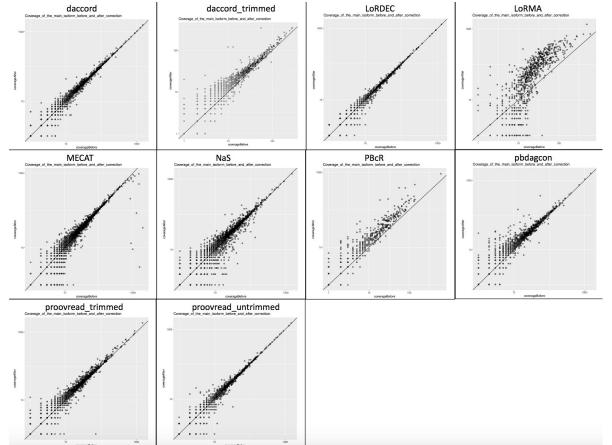

Difference on the number of isoforms

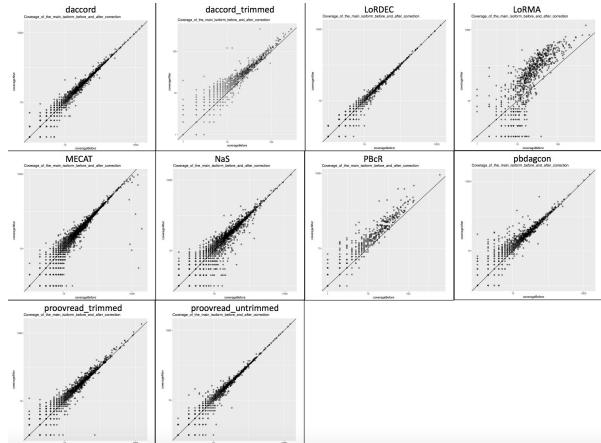

Difference on the number of isoforms



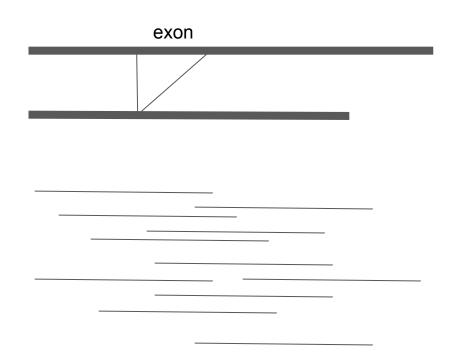


- $G_{T2} (10 \text{ reads}) => cov(T1)=10 cov(G)=100$ T2 (90 reads) => cov(T2)=90 cov(G)=100


relCov(T1) = cov(T1)/cov(G) = 0.1relCov(T2) = cov(T2)/cov(G) = 0.9



Is there a correction bias towards the major isoform? Coverage of main isoform before (x) and after (y) correction

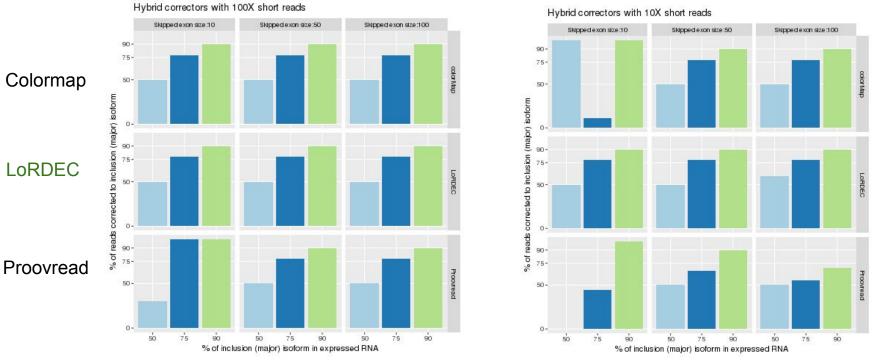


Is there a correction bias towards the major isoform? Coverage of main isoform before (x) and after (y) correction

LoRMA, PBcR, daccord_trimmed tend to overestimate main isoform expression:

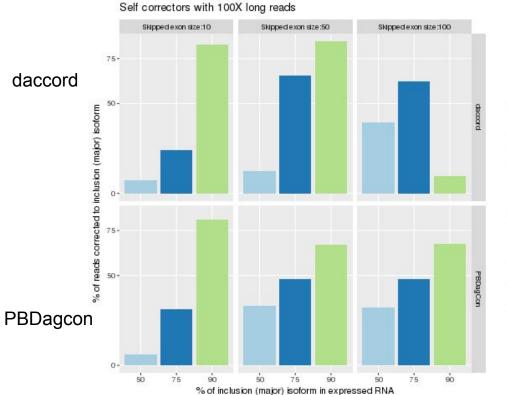
-Split reads? -Correction towards major isoform? Simulation: when are reads corrected to major isoform?

2 transcripts

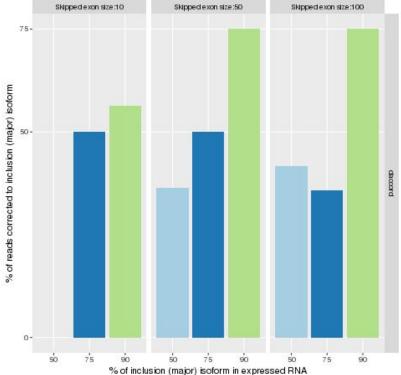

different abundances

Skipped exon

Simulated reads


Simulation: when are reads corrected to major isoform?

Ideal correction: Light blue should be 50%, dark blue should be 75%, green should be 90%



Bottom line: LoRDEC generally doesn't overcorrect, proovread and colormap do

Simulation: when are reads corrected to major isoform?

Self correctors with 10X long reads

daccord

Conclusion (1/3)

Performance:

LoRDEC, daccord, LoRMA, MECAT, pbdagcon

Error rate:

PBcR, NaS, proovread. Rest: 2-5% remaining error rate

Conclusion (2/3)

Same number of detected genes:

LoRDEC, daccord, PBcR, proovread, (NaS)

Isoform preservation:

LORDEC, proovread (tricky to decide; based on lost transcripts, & number of isoforms)

Conclusion (3/3)

Overall recommendations:

Proovread, PBcR, NaS

If you have to choose a non-hybrid:

daccord/pbdagcon, because they do not lose coverage like LORMA/MECAT

Conclusion (4/3)

Potential pitfalls:

- Single data type (1D)
- potential aligner bias
- did not track isoforms before/after correction
- couldn't run Canu (disk hungry)